التصنيفات
الصف التاسع

الطاقة النووية علوم الصف التاسع الفصل الثالث -مناهج الامارات

الطاقة النووية Nuclear Energy
مقدمة
تعتبر الطاقة اهم جزء في المحيط حولنا حيث نعتمد عليها كلية في انجاز الشغل فأقول ان الشيء لديه طاقة أي لديه إمكانية على انجاز الشغل. أي ان كل شيء نعمله بحياتنا مرتبط بالطاقة بشكل او بآخر أي ان الطاقة هي المقياس الذي بواسطته نحدد القابلية على انجاز الشغل حتى لو كان النظر والقراءة مثلا فهي شكل من أشكال انجاز الشغل وعندما نجري فان الجسم سوف يحرق السكريات والدهون الموجودة فيه ويحولها إلى حرارة تنتشر في الجو المحيط او أنحاء الجسم نفسه والشغل الذي نقصده هنا هو حركة الأجسام او تسخينها او إضاءتها.
The Energy that makes our world work
وأشكال الطاقة هي: الطاقة الكهربائية- الطاقة الحركية-الطاقة الكيميائية –الطاقة الكامنة-طاقة المتحجرات-طاقة الكتل الحية-طاقة باطن الأرض-الطاقة الهيدروليكية- الطاقة النووية- الطاقة الشمسية-طاقة الرياح–طاقة الجاذبية
ان ابسط شكل للطاقة هبي الطاقة التي يمتلكها الجسم عندما يكون متحركا والتي تدعى بالطاقة الحركية Kinetic Energy وهذه الحركة يمكن ملاحظتها بالعين المجردة وهناك أنواع أخرى من الطاقة الخطية لا يمكن ملاحظتها بالعين المجردة مثل الطاقة الحركية للأكترونات داخل ألذره وتدعى بالحركة المجهرية وكذلك طاقات الصوت والضوء والطاقة لا تمثل إحدى خواص النظام تحت الدراسة وهي بذلك لا يمكن متابعتها وتسجيلها وإنما يمكن متابعة ومشاهدة آثارها
Do not even try to picture energy as you would a common object
أي عندما نحاول إظهار حركة جسم معين فإننا سوف نظهر الجسم فقط ولا تظهر معه طاقته الحركية ولا يمكن التميز بين جسم متحرك بسرعة عادية وآخر ساكن له نفس المواصفات ولكن يختلف عنه بالسرعة إلا إذا كان هناك اثر لتلك الحركة في الوسط او على الجسم بمعنى اصح ان الطاقة ليست من خواص الجسم الأساسية مثل الكتلة والكثافة وبعض الأجسام يظهر عليها بانها تمتلك طاقة نتيجة لتغير شكلها عن الشكل المعروف مثل النابض المضغوط.
الطاقة يمكن ان تحول من شكل إلى آخر وهي كمية محفوظة مثلها الكتلة. وتعرف على انها مقياس للقابلية في انجاز الشغل
Energy is the ability to do work

الطاقة بشكل عام تصنف الة نوعين أساسين هما الطاقة المتجددة Renewable Energy مثل الطاقة الشمسية وطاقة باطن الأرض والطاقة الحية….. والنوع الثاني هو الطاقة الغير متجددNonrenewable Energy مثل الطاقة الكهربائية والطاقة النووية والطاقة الكيمائية …..
مع العلم ان معظم الطاقة التي نستهلكها تأتي على شكل طاقة غير متجدد وهي دائما تتحول الى حرارة ترسل الى الجو المحيط (هل في النتيجة ترتفع درجة حرارة الهواء المحيط باكرة الأرضية؟) ( هل يمكن ان نقسم جميع انواع الطاقة على انها تنحصر بين الطاقة الحركية والكامنة وكيف ؟)
قانون حفظ الطاقة
الطاقة لا تفنى ولا تستحدث ويمكن ان تتحول من شكل الى لآخر بتأثير فعل معين او بدونه وكذلك يمكن ان تتحول الى مادة. ويمكن النظر الى حركة البندول البسيط لملاحظة تبدل الطاقة من شكل الى آخر (لماذا يتوقف البندول بعد حين؟)
الطاقة والمادة
يمكن ان تتحول الطاقة الى مادة كما يحدث إثناء توليد زوج إلكترون- بوزترون من أشعة كاما وكذلك يمكن ان تتحول المادة الى طاقة كما يحدث في الانشطار النووي وفق العلاقة التالية:

E=m C(+2)

( سوف نتطرق إلى معظم أنواع الطاقة تباعا من خلال هذا الموقع)

الطاقة النووية:
ان الجهود التي بذلت بعد الحرب العالمية الثانية في البحوث والتنمية في مجال الذرة وتركيبها وسيل الدراسات النظرية والعملية في هذا المجال جعلت من محاول استثمار الطاقة النووية كبديل مؤهل للنفط في مجال إنتاج الكهرباء وهذه الجهود مازالت مستمرة في التغلب على المصاعب في إنتاج هذه الطاقة وكذلك وسائل المان التي يشترط إتباعها عند استخدام هذه الطاقة من حيث عدم المساس بالتوازن الطبيعي للبيئة والمردود الاقتصادي. وتسابقت دول العالم في دراسة احتياطي الوقود النووي لديها أي اليورانيوم وكلفة الاستفادة منه ويوازي ذلك الاستخدام العسكري لهذه الطاقة. وقلما نال موضوع علمي أهمية عسكرية واقتصادية وسياسية كما نال موضوع الطاقة النووية
تظهر الطاقة النووية كطاقة كامنة تربط مكونات النواة ذات الحجم الصغير جدا بحيث عندا تتفكك النواة الى مكوناتها أطلقت هذه الطاقة على شكل حرارة وجسيمات تمتلك طاقة حركية هائلة وأشعة وقد احتر العلماء لإيجاد تفسير مقنع لطبيعة القوى النووية ووضعت نماذج كثيرة ومازال البحث جاري في مجال النماذج النووية لمعرفة طبيعة هذه الرابطة والتي عندما تتفكك تظهر على شكل طاقة هائلة. فمثلا ان الطاقة التي تربط المكون الواحد لنواة التربتيوم H (3,1) – عدد النيوكلونات الكلي 3 وعدد البروتونات 1- هي 8.482 MeV ( هذه الوحدة تكافيء 1.6E-13 جول) وطاقة الربط للنيوكلون الواحد النواة الهيليوم He(3,2) هي 7.711MeV فنلاحظ ان هناك فرق في طاقة الربط سببه طاقة كولوم الناتجة عن تنافر البروتونات مع بعضها وكلما ازداد العدد الكتلي ارتفعت طاقة الربط حتى تتشبع عند أنوبة الحديد Fe وثم تعدو الى الانخفاض مع زيادة العدد الكتلي حتى تصل الى اقل قيمها عند مجموعة اليورانيوم.
عندما تتهيج النواة ( طرق تهيج النواة تختلف كليا عن طرق التهيج الاعتيادية!!!) ترتفع نيكلوناتها الى مستويات للطاقة مرتفعة نسبيا وتصبح النواة بحالة متهيجة Excited وتعود الى وضع الاستقرار بأن تبعث الأشعة النووية مثل ( كاما- بيتا- ألفا..) وتعود الى وضع الاستقرار اعتمادا على العمر النصفي ! للانحلال وعند الاستمرار في اكتساب الطاقة ( الطاقة هنا تكتسب بقيمتها وليس بتركيزها !!!) فان النيوكلونات تقذف خارج النواة وتترك عند النواة طاقة كبيرة لا تتحملها مما يؤدي الى انشطارها Nuclear Fission
التفاعلات النووية Nuclear Reaction
هي عملية إنتاج الطاقة او امتصاصها نتيجة للإتحاد الأنوية مع بعضها أو تصادم ( اقتناص) النواة مع جسيمة وذلك لتوليد نواة جديدة ( مثلا اقتناص نواة اليورانيوم 235 للنيوترون يولد نواة اليورانيوم 236 المتهيجة او اقتناص نواة النيتروجين للبروتون يولد نواة الأكسجين ويطلق اشعة كاما) وعندما تعود النواة الى وضع الاستقرار تطلق الطاقة التي بحوزتها على شكل أشعة كاما او حتى جسيمات اخرى حتى لو كانت من نفس نوع الجسيمة التي تفاعلت معها الفترة بين التهيج وإطلاق النواتج تكون طويلة جدا بمليارات من السنين او قصيرة جدا قد تصل الى 10E-16 sec

الانشطار النووي Nuclear Fission

هو واحد من التفاعلات النووية والتي تكتسب فيها النواة طاقة فوق تحمل طاقة الربط مما يؤدي الى انشطارها وهذه فكرة كانت تراود علمء الفيزياء لفترة زمنية طويلة لمعرفتهم المسبقة عن كمية الطاقة التي يمكن الحصول عليها.
في عام 1933 اكتشف فيرمي ان للنيوترون قابلية كبيرة على التفاعل مع الأنوية وقد تم إنتاج عدد من النظائر المشعة وثم توزعت النيترونات حسب الطاقة التي تمتلكها وتبين ان النيترونات الحرارية يمكن ان تؤسر من قبل النواة بسهولة. وفي عام 1939 اعلن عالمان من ألمانيا بأنهما وجدا عنصر البار يوم كناتج من قذف اليورانيوم بالنيوترونات وقد خمنا فيما بعد بان الباريوم لا بد ان ينتج من انشطار اليورانيوم وفي نفس الوقت اعلن العالم بور بانه يمكن انتاج تفاعل متسلسل! إثناء اقتناص النيترونات. وفي عام 1940 اكتشف البلوتونيوم Pu(239-94) ( لاحظ انه أثقل من اليورانيوم ويحتوي على عدد اكبر ويسمى من العناصر ما بعد اليورانيوم!) وفي عام 1942 توصل فيرمي ومجموعته الى إنتاج اول تفاعل متسلسل جرب تحت منصات ملعب لكرة القدم وبحلول عام 1945 تم تشغيل مفاعلات إنتاج البلوتونيوم وفي نفس العام استخدمت القنابل على اليابان.
لكل التفاعلات النووية يوجد مايسمى بمساحة المقطع وهو مقياس لاحتمالية حدوث التفاعل النووي فبالنسبة لليورنيوم 235 مساحة مقطعه كبيرة جدا بالنسبة للنبوترونات الحرارية ( النيترونات الحرارية هي النيترونات التي تتحرك دون ان يتم تبادل حراري بينها وبين الوسط ويمكن حساب طاقتها بعلاقة بولتزمان!!) بينما اليورنيوم 238 يمتلك مساحة مقطع كبير بالنسبة الى النيترونات السريعة ولهذا فان النيوترون الحراري يقتنص بسرعة من قبل اليورانيوم 235 مولدا نواة متهيجة مع انبعاث كمية من الطاقة تمثل طاقة الربط للنيوترون في النواة لآن النواة عندما دخل النواة لا بد وان يرتبط مع باقي المكونات في النواة وتنطلق من هذه العملية اشعة كاما والنيوترونات والطاقة المتبقية عند نواة اليورانيوم 236 تكون اكبر من طاقة الربط وهي مستقرة وعليه تهتز بشكل كبير يؤدي الى تشوهها أولا ومن ثم انشطارها الى مكونين يسميان بنواتج الانشطار ( نسبة عدد النيترونات الى عدد البروتونات فيهما مقربة الى النسبة في اليورانيوم وهي قسمة العدد 144 لنيوترونات على العدد 92 للبروتونات وتساوي 1.6 تقريبا او قريبا من هذا الرقم ) من أمثلتها نواة الزينون Xe(140-54) ونواة الباريوم Ba(142-56) ولا توجد نواتج محدد لشظايا الانشطار Fission Fragmentsهذه وانما هناك ثلاثين احتمالا للنواتج. وقد وجد عمليا ان شظايا الانشطار يكون عددها الكتلي من 72 الى 158 . هذه النواتج عندما تنتج تكون بعيدة عن خط الاستقرار!! وتطلق أشعة بيتا لكي تهبط او ترتفع نحو خط الاستقرار ولهذا سوف تحدث سلسلة من التفاعلات النووية تسمى بالتفاعلات المتسلسلة والنيوترونات الناتجة من الانشطار والتي بكون عددها بين 2 و3 ( حسب نوعية شظايا الانشطار) تكون سريعة وتتفاعل مع انويه أخرى لا يشترط اليورانيوم وتكون نظائر أخرى بعيدة عن خط الاستقرار وأشعة كاما وهكذا ( تسمى هذه النيوترونات بالنيوترونات اللحظية) وهذه النيترونات السريعة لا تتفاعل مع اليورانيوم 235 وإنما يجب ان تبطأ كما يحث في المفاعلات النووية!! حتى يقتنصها اليورانيوم 235
الطاقة المنبعثة عند الأنشطار
ان عملية الانشطار تمتلك أهمية كبيرة لكون معدل طاقة الانشطار قد يصل الى 200MeV للنواة الواحدة ويمكن حساب معدل طاقة الانشطار من المعادلة الشبه تجريبية للكتلة!! حيث ان طاقة الربط للجسيم الواحد هي بحدود 8.4MeV عند الأعداد الكتلية 80 الى 150 وقد وجد ان معظم نواتج الانشطار تمتلك عدد كتلي ضمن هذا المعدل، وطاقة الربط تبلغ 7.5MeV في منطقة اليورانيوم أي يوجد فرق مقداره 0.9MeV بين النواة المركبة ونواتج الأنشطار وهذا الفرق ينطلق عند عملية الانشطار
Binding energy/236=0.9
B.E=236×0.9=212.9=200 MeV
هذه الكمية من الطاقة للانشطار الواحد توزع بالشكل التلي:
Kinetic Energy of fission fragment 167
K.E> of neutrons=5
Energy of Gamma=7
Energy of Beta=5
Energy of delayed Gamma=5
Neutrino energy =11
Sum=200 MeV
ان انشطار اليورانيوم هو مصدر للطاقة وكذلك مصدر للنيترونات البطيئة والسريعة والتي تستخدم في مختلف قطاعات العلوم في الفيزياء وكذلك تستخدم في استمرار التفاعل وحدوث سلسلة من التفاعلات النووية تنتهي مع انتهاء المادة المنشطرة او في تداخل هندسي وفيزياء مدروس ومقنن!!
انشطار نواة واحدة من اليورانيوم يبعث طاقة مقدارها 200MeV=3.2E-4 erg ولمول الواحد فان الطاقة الناتجة هي 1.93E+20 erg ( ألمول يحتوي عدد افاكادرو من الذرات أي 6.23E+23 ذره) ول تم تحويل ذلك الى حرارة فانه يعادل 2E+13 cal وهذه الطاقة وإذا عرفنا ان تسخين لتر من الماء من الصفر الى 100 درجة يستهلك 100000Cal فيمكن تقدير كمية الطاقة هذه والتي يمكن ان تعادل تفجير 20220kg من مادة الـ TNT وعند استغلالها كمصدر للقدرة نجد ان الانشطار الواحد يحرر 32.2E-11 w والانشطار الكامل الغرام واحد من اليورنيوم يجهز 8.2E+20 W.sec او يساوي 2.3E+10kW.h أي ميكا واط لليوم الواحد واذا استمر تحرير الطاقة ليوم كامل فان الكيلوغرام ينتج حرارة بمعدل 100 ميكا واط وإذا حولت هذه الحرارة إلى كهرباء بكفاءة مقدارها 30% فان الطاقة الكهربائية تصبح 300000 kW وهذا يكافئ الطاقة الكهربائية الناتجة من معمل كهرباء يستهلك 2500 طن من الفحم في اليوم الواحد!!

م.ن

لقراءة ردود و اجابات الأعضاء على هذا الموضوع اضغط هناسبحان الله و بحمده

التصنيفات
الصف الثامن

معلومات عن الطاقة الكهرومائية للصف الثامن

معلومات عن الطاقة الكهرومائية






الطاقة الكهرومائية


هي الكهرباء المتولدة عن المساقط المائية، أي إنتاج الطاقة من خلال استخدام قوة الجاذبية نتيجة سقوط المياه. وتعد من أوسع أشكال الطاقة
المتجددة المستخدمة في إنتاج الكهرباء. قبل استخدام الطاقة المائية على نطاق واسع لتوفر الطاقة الكهربائية، الطاقة المائية كانت تستخدم لأغراض الري فقط،
وتشغيل الآلات، مثل طواحين المائية، وآلات النسيج، والمناشر. حاليا تقنيات توليد الطاقة الكهرومائية متقدمة ومتطورة بدرجة كبيرة وليس من المتوقع أن تحدث
طفرة كبيرة في تقنياتها في المستقبل لزيادة كفاءتها والتوسع في استخدامها. توليد الطاقة من المساقط المائية يتم عن طريق استخدم قوة سقوط أو تدفق
المياه لتحريك المولدات التوربينية بدلا من استخدام البخار. واستخدمت المحطات الكهرومائية لتوليد الكهرباء على نطاق واسع منذ أوائل القرن العشرين. وهناك نوعان
من محطات الطاقة الكهرومائية: النوع الأول يشمل المحطات التي تستخدم مساقط المياه العالية، وهذه المحطات تستفيد من قوة سقوط المياه من أماكن شاهقة
وذلك عن طريق بناء السدود على طول الأنهار الرئيسة، وعادة يتم إنشاء خزانات عملاقة لخزن المياه وأيضا للتحكم في تدفق كمية المياه عبر السد وحسب الطلب على
الكهرباء. وتنتج هذه المحطات عادة كميات هائلة من الطاقة الكهربائية. أما النوع الآخر من المحطات الكهرومائية فهي التي تستخدم مساقط المياه من الأنهار، وهذه


المحطات تستفيد من تدفق الأنهار لتحريك التوربينات. والطاقة المنتجة من هذه المحطات أقل بكثير من كمية الطاقة التي تولدها محطات مساقط المياه العالية
حاليا الطاقة المائية هي المصدر الرئيس للطاقة الكهربائية المتجددة، وهي توفر أكثر من 97 في المائة من مجموع الكهرباء التي تولدها مصادر الطاقة المتجددة
أي أكثر من 700 ألف ميجاواط كهرباء، وهذا يمثل نحو 19 في المائة من الكهرباء المنتجة في العالم. أما المصادر الأخرى بما في ذلك الطاقة الشمسية، والطاقة
الحرارية الأرضية والرياح، والكتلة الحيوية فتشكل أقل من 3 في المائة من إنتاج الكهرباء المتجددة. ولكن ليس من المتوقع أن يزداد هذا الإنتاج كثيرا في المستقبل
خصوصا في الدول المتقدمة صناعيا, وذلك لأن معظم الإمكانات المتاحة قد تم استغلالها في هذه البلدان


هناك فوائد كثيرة من إنتاج الطاقة بواسطة المحطات الكهرومائية: فمثلا لا توجد انبعاثات غازات خطرة أو نفايات صلبة، ولا توجد أي تكاليف للوقود وإنما هي تماما
مستدامة، كذلك المحطات الكهرومائية موثوق بأدائها التقني، وذات تكاليف صيانة منخفضة، إضافة إلى ذلك السدود الخاصة بها تساعد على السيطرة على
الفيضانات. كما أن إنتاج الطاقة الكهرومائية أقل تكلفة من الكهرباء المولدة باستخدام الوقود الأحفوري أو الطاقة النووية. كذلك وفرة
مصادر الطاقة الكهرومائية تساعد على جذب الصناعة




ولكن في الوقت نفسه هناك آثار سلبية للطاقة الكهرومائية قد تشكل تحديا كبيرا لها. فمثلا التغيرات في تدفق المياه يمكن أن تؤثر سلبا في الحياة الحيوانية
والنباتية، وكذلك خزانات المياه يمكن أن تحتل مساحات كبيرة من الأراضي. والمحاذير البيئية من آثار السدود والخزانات العملاقة قد تحدد تطور وزيادة مصادر الطاقة
الكهرومائية الاقتصادية. ومن أكثر عيوب محطات الطاقة الكهرومائية التي تستخدم مساقط المياه العالية مأساوية هو تأثيرها السلبي في الحياة البرية، حيث
إن خزانات المياه يمكن أن تغير درجة حرارة المياه وتمنع هجرة الأسماك وتغلق منابع مرور الأسماك. لكن من الميزات الكبيرة لهذا النوع من المحطات الكهرومائية
قدرتها على التعامل مع ارتفاع أحمال الذروة الموسمية بل حتى اليومية. فمثلا عند انخفاض الطلب على الكهرباء فإن السد يقوم بتخزين كميات أكثر من المياه التي
توفر لاحقا مزيدا من التدفق عند الحاجة. في حين المحطات التي تستخدم مساقط المياه من الأنهار فإن آثارها البيئية أقل بكثير، ولكن هنا لا يمكن السيطرة على


تدفق كمية المياه عبر المولد، لذلك لا يمكن التحكم في كمية الطاقة الكهربائية المنتجة في هذه المحطات، كما أن تدفق النهر يعتمد على هطول الأمطار في المنطقة
كثير من محطات الطاقة الكهرومائية الحالية جاوزت أعمارها التشغيلية, كما أن كثيرا منها قد تضررت نتيجة الفيضانات في السنوات الأخيرة بأضرار يتعذر إصلاحها
وكذلك التكاليف الأولية لبناء محطات طاقة كهرومائية جديدة أو لتحل محل المحطات القديمة عالية جدا، لذلك معظم الاستثمارات حاليا تذهب إلى أشكال
أخرى من الطاقة المتجددة. المخاطر الاقتصادية في الاستثمار في مشاريع إنتاج الطاقة الكهرومائية يمكن أن تكون كبيرة، لأنها تحتاج إلى تكاليف رأسمالية
عالية جدا. إضافة إلى وجود عدم يقين فيما يتعلق بأسعار الطاقة في المستقبل. إن تكاليف بناء وإنتاج الطاقة الكهرومائية تتباين بشدة من محطة إلى أخرى
وأحد أهم الأسباب هو حجم المحطة. المولد الصغير يتطلب عددا من العاملين للتشغيل والصيانة تقريبا يساوي ما تحتاج إليه محطة كهرومائية كبيرة, ما يجعل
تكلفة إنتاج الكيلوواط الواحد في محطات الطاقة الكهرومائية الكبيرة أقل من تكلفة إنتاجه في المحطات الأصغر. ومقارنة بغيرها من مصادر إنتاج الطاقة الكهرباء
فإن تكاليف الإنتاج في محطات الطاقة الكهرومائية هي نحو ثلث تكاليف الإنتاج في المحطات التي تستحدم الوقود الأحفوري لتوليد الطاقة الغاز والفحم أو النفط
أو في محطات الطاقة النووية. العامل الرئيس للفرق في تكلفة الإنتاج يعود إلى تكاليف الوقود اللازمة في الأنواع الأخرى من مصادر إنتاج الطاقة. تكاليف رأس
المال لإنشاء محطة لتوليد الطاقة الكهرومائية هو مماثل لتكاليف رأس المال اللازم لبناء محطات الطاقة النووية، ولكن إلى حد ما أعلى من تكاليف رأس المال
المطلوب لبناء محطات التوليد التي تعمل بالوقود الأحفوري. ولكون المحطات الكهرومائية لا تحتاج إلى وقود، فإن مجموع التكاليف لإنتاج كل كيلوواط/ ساعة في
معظم الحالات أقل من تكاليف الإنتاج في محطات الوقود الأحفوري والنووي

اتمنى الاستفادة

لقراءة ردود و اجابات الأعضاء على هذا الموضوع اضغط هناسبحان الله و بحمده

التصنيفات
الصف العاشر

ابي باوربوينت الفيزياء عن الشغل والطاقة للصف العاشر

سلام عليكم شحالكم كيف امسيتو ابا باوربوينت الشغل والطاقة
تـــكـــفـــون

لقراءة ردود و اجابات الأعضاء على هذا الموضوع اضغط هناسبحان الله و بحمده

التصنيفات
الصف الثاني عشر

تقرير جاهز عن الطاقة الشمسية من القمر (جاهز للصف الثاني عشر


طاقة شمسية من القمر!

طاقة شمسية من القمر!

القمر يولد الكهرباء

المقدمة :ـ
من المتوقع أن يصل عدد سكان العالم إلى 10 مليارات نسمة بحلول عام 2050م، وهذا العدد الهائل من البشر سيصل احتياجه من الطاقة إلى 5 أضعاف الطاقة التي يتم توليدها حاليا. لهذا ظهرت الحاجة للحصول على العديد من المصادر الطبيعية التي لا تنضب بخلاف المستخدمة الآن لاستغلالها استغلالا أمثل في إنتاج الطاقة مستقبلا.

ومن أطرف المشاريع المستقبلية في هذا المجال مشروع جديد يعتمد على القمر في توليد الكهرباء. ويرتكز هذا المشروع على أنظمة "الطاقة الشمسية القمرية" The Lunar Solar Power لبناء محطات لتوليد الطاقة الكهربائية على سطح القمر، تتكون من ألواح عريضة من الخلايا الكهروضوئية. وتقوم هذه الألواح بتلقي واستقبال أشعة الشمس الساقطة على القمر وعكسها في صورة أخرى إلى الأرض حيث تستقبلها أجهزة استقبال وتحولها إلى طاقة كهربائية.
وقد يبدو الحديث عن كهرباء من القمر أشبه بالخيال العلمي الآن، لكن عرض مشروع جديد لأول مرة في أكبر مؤتمر دولي لأبحاث وتقنية الفضاء المعروف بـ"كونجرس الفضاء العالمي" (انعقد في هيوستن في الولايات المتحدة في الفترة من 10-19 أكتوبر 2022)، أظهر أن هناك تخطيطا تفصيليا لهذه التقنية يظهر كيفية الاستفادة من طاقة الشمس على القمر، وتحويلها إلى كهرباء ترسل إلى الأرض لسد الاحتياجات المتزايدة لسكان الأرض.
لماذا القمر؟

دافيد كريسويل

ولكن لماذا يذهب العلماء إلى القمر للحصول على الطاقة الشمسية بالرغم من وجود مواقع كثيرة زاخرة بأشعة الشمس على مدار العام على الكرة الأرضية! وعلى الرغم من أن مقدار الإشعاعات الشمسية التي تصل إلى الأرض كل 20 دقيقة يعادل طاقة الوقود الأحفوري التي تستعملها البلدان الرئيسية المستهلكة للطاقة سنة كاملة؟!
للإجابة على هذه التساؤلات ينبغي النظر في البداية إلى هذا المشروع؛ باعتباره حلقة مهمة في سلسلة الآمال المعلقة على الطاقة الشمسية لحل مشاكل نقص الطاقة في المستقبل، ويؤكد "دافيد كريسويل" مدير معهد عمليات علم الفضاء بجامعة هيوستون الأمريكية أن هذه العملية يمكن أن تمد الأرض بجميع احتياجاتها من الطاقة بحلول عام 2050. ومن المتوقع أن تحدث طفرة مستقبلا في هذا المجال مع التقدم التقني في علوم الفيزياء والفضاء لجعل هذه الطاقة اقتصادية وسهلة الاستخدام وتتناسب مع كل أفراد المجتمع.
والبروفيسور "كريسويل" حصل على درجة الدكتوراة في الفيزياء من جامعة "رايس"، ويعكف على دراسة هذه الفكرة العجيبة منذ 22 عاما، حينما كان مديرا في معهد العلم القمري الذي يعرف حاليا بـ"المعهد القمري والكوكبي"، ويرى أنها ليست فكرة جيدة فحسب، ولكنها حيوية وضرورية في ضوء حاجة الأرض المتزايدة إلى مصادر طاقة متجددة. ويقول في هذا الشأن: "ربما يكون القمر هو البديل الوحيد مستقبلا للحصول على هذا القدر من الطاقة".
ومن المعروف أن القمر لا يعرف العوائق التي تحد من كامل الاستفادة من طاقة الشمس على الأرض؛ فهو يخلو من الغلاف الجوي. ومن الطبيعي انعدام السحب والأمطار والعواصف الجوية والترابية فيه؛ مما يجعله مكانا مثاليا لالتقاط كميات هائلة من أشعة الشمس التي يتم الحصول عليها كاملة بصورة مستمرة؛ لأن أشعة الشمس تسقط على القمر طوال العام، ما عدا ثلاث ساعات فقط أثناء الكسوف القمري الكامل.. ويوضح "كريسويل" أن 1% فقط من الطاقة الشمسية التي يتلقاها القمر من الشمس (التي تقدر بحوالي 13 ألف تيراوات terawatts) كافية للوفاء باحتياجات الأرض من الطاقة، وأن المحطات التي سيتم بناؤها على القمر لن تتعرض لأي مؤثرات خارجية قد تؤثر على عملها في ضوء الانعدام المناخي الذي يتمتع به القمر.
استخلاص الكهرباء من الشمس

الخلايا الكهروشمسية

ومع افتراض البدء بتنفيذ هذا المشروع الآن فإنه من المتوقع الحصول على طاقة من القمر خلال 10 سنوات على الأكثر، ولكن قد ينتظر القائمون على هذا المشروع 5 أو 10 سنوات أخرى لبدء الخطوات التنفيذية، لكي تكون أجهزة استخلاص الكهرباء من الشمس في مستوى يضمن توفير كهرباء بلا حدود من القمر.
ومن المعروف أن تحويل أشعة الشمس إلى طاقة كهربية يعتمد على الخلايا الكهروضوئية أو الخلايا الكهروشمسية التي تعرف علميا باسم "فوتوفولتيكس". وقد تم اكتشاف هذه الظاهرة عام 1839م حيث وجد أحد علماء الفيزياء أن الضوء يستطيع تحرير الإلكترونات من بعض المعادن، وقد نال العالم أينشتاين جائزة نوبل في عام 1921م لتفسيره لهذه الظاهرة، واخترع الأمريكي "روسل أوهل" الخلية الشمسية المصنوعة من السليكون في عام 1941م. وتتميز الخلايا الشمسية بأنها لا تستهلك وقودا، ولا تلوث الجو، وحياتها طويلة، ولا تتطلب إلا القليل من الصيانة.
وتقدر عادة كفاءة الخلايا الشمسية بحوالي 20%، وما زال التطور في قدرات وتكاليف هذه الخلايا مستمرا حتى الآن، وتجرى العديد من التجارب لإنتاج خلايا كهروضوئية أشد فاعلية وزهيدة النفقات؛ فكلفة استخراج الكهرباء من الطاقة الشمسية آخذة في التناقص، وتناقصت بنسبة تزيد على 65% خلال السنوات العشر الماضية فقط. حيث يطور العلماء تقنيات جديدة لزيادة القدرة التحويلية للخلايا الشمسية وتخفيض تكلفتها، وتطوير قدراتها.
ومن المنتظر أن تطرح شركة "سفرال سولار" الكندية باكورة إنتاجها من ألواح الخرز الكهروشمسي هذا العام 2022، وهي تقنية جديدة رخيصة الكلفة، وتتميز بالمتانة وقدرتها على التشكل وطواعيتها في الاستخدام لأي غرض.
وفى الشهر الماضي (مايو 2022) ابتكر علماء الهندسة الكهربائية في جامعة برينستون الأمريكية تقنية جديدة تجعل من الخلايا الشمسية مصدرا اقتصاديا مهما للطاقة. وتعتمد هذه التقنية على استخدام مواد عضوية تتألف من جزيئات كربونية بدلا من الأنواع التقليدية المعتمدة على مواد سيليكونية، وتسمح بتوليد الكهرباء بكلفة أقل ولاستعمالات أكثر. وفي الوقت الراهن يجري الباحثون في مركز تكساس للتواصلية الفائقة والمواد المتقدمة Texas Center for Superconductivity and Advanced Materials أبحاثا لتطوير أساليب النانوتكنولوجيا لتحويل التربة القمرية إلى خلايا شمسية. ويؤكد "إليكس فريوندليتش" أستاذ بحوث الفيزياء أن تربة القمر تحتوي على المكونات الضرورية لتصنيع الخلايا الشمسية بطريقة النانوتكنولوجيا، وأنها ستكون ذات قدرة تحويلية أعلى بكثير من 35%.
كيف يتم التخطيط للمشروع؟

يعتمد التخيل المستقبلي لوضع هذه التقنية في حيز الوجود على تقنيات علمية متوفرة حاليا وعلى المواد المتواجدة بالفعل على القمر، وليس هناك حاجة إلى شحن مواد خام إلى القمر لبناء هذه المحطات؛ لأن هذه المواد متاحة بالفعل في القشرة العليا للقمر lunar regolith.
ويمكن البدء في هذا المشروع عن طريق إرسال عدد محدود من رواد الفضاء إلى القمر مع سيارة قمرية معدلة من نوع "روفر" التي تعرف بـ"المتجول القمري المستقل ذاتي الحركة عبر سطح القمر" والتي ابتكرت أثناء الرحلات الشهيرة إلى القمر خلال الفترة من 1969-1972. ويفكر العلماء بإجراء بعض التعديلات عليها مثل تزويد السيارة بعجلات عريضة بها محركات خاصة تحيل تربة القمر إلى حالة قريبة من الانصهار، يستفاد منها في الحصول على السليكون وعلى الكثير من المواد الأخرى اللازمة لتصنيع الخلايا الشمسية.
ولن يكون هناك أي مشكلة في البناء؛ فيكفي عدد قليل جدا من الرواد، مع مجموعة مبرمجة من الروبوتات؛ ليتم إنشاء محطة ضخمة على القمر -كمحول طاقة شمسي عملاق- كفيلة باستقبال أكبر قدر من أشعة الشمس وتحويله إلى كهرباء، وستكفي نسبة 1% فقط من أشعة الشمس على القمر لإمداد ضعف عدد السكان في العالم بكل احتياجاتهم من الطاقة الكهربائية أو الحرارية. وبعد تشغيل هذه المحطة يعود الرواد إلى الأرض؛ لتقوم الروبوتات المبرمجة والمتصلة بمركز المتابعة على الأرض بمهام الإشراف الكامل عليها.
أما عملية توصيل الكهرباء من القمر للأرض فمن المتوقع أن تكون أكثر سهولة، وستتم عن طريق تحويل الطاقة الكهربية المجمعة من القمر إلى أشعة المايكروويف التي تنطلق بسرعة نحو الأرض ليتم استقبالها عن طريق أجهزة متطورة تعيدها إلى كهرباء. ويمكن أن يتم توزيع الكهرباء بالطرق التقليدية إلى جميع مناطق العالم، عبر مراكز مزودة بوسائل تضمن تلبية احتياجات البشر من الطاقة.
ويتوقع المؤيدون لإنشاء محطات الطاقة الشمسية القمرية أن هذه التقنية ستوفر طاقة كهربائية مستمرة ورخيصة إلى أهل الأرض، وأن الاستثمار الرأسمالي للقمر سيؤسس مستعمرات إنسانية كبيرة وقدرة تصنيعية عالية تستطيع خلق ثروة هائلة جديدة. كما يتوقعون أن هذه الثروة ستمكن الإنسان من الاستكشاف المربح للقمر والنظام الشمسي الداخلي، وستزيد من قدرات سكان الأرض والقمر في الدفاع عن أنفسهم ضد هجوم المذنبات والكويكبات الشاردة في الكون الفسيح!

المصادر:ـ
جريدة البيان الإماراتية (2017م). "طاقة ضوء منحة من القمر للأرض" 3/12/2017.
مجدي فهمي (2017م). "كهرباء وفيرة من القمر"، جريدة الأخبار، العدد: 16059، 14/10/2017.
إمكانات و آفاق توليد الكهرباء من مصادر الطاقة المتجددة في دول الإسكوا / اللجنة الاقتصادية و الاجتماعية لغربي آسيا , نيويوك : الأمم المتحدة، 2022 .

موقعhttp://www.aip.org/ , المعهد الأمريكي للفيزياء.

لقراءة ردود و اجابات الأعضاء على هذا الموضوع اضغط هناسبحان الله و بحمده

التصنيفات
الصف الاول الابتدائي

بور بوينت عن الطاقة الكهربائية و التيار الكهربائي الصف الأول

يبتلكم بور بوينت عن الطاقة الكهربائية و التيار الكهربائي

و أتمني أن تستفيدوا منه

أتمني لكم التوفيق

لقراءة ردود و اجابات الأعضاء على هذا الموضوع اضغط هناسبحان الله و بحمده

التصنيفات
الصف السادس

ورقة عمل ( الطاقة الضوئية والطاقة الصوتية .. ) << من صنعي للصف السادس

السلام عليكم ..

سويت ورقة عمل حق اختيه وقلت بنزلها فالمدونة

الملفات المرفقة

لقراءة ردود و اجابات الأعضاء على هذا الموضوع اضغط هناسبحان الله و بحمده

التصنيفات
الصف التاسع

تلخيص وحدة الطاقة الذرية -تعليم اماراتي

أريد تلخيص عن وحدة الطاقة الذرية بأقصى سرعة أرجوكم[COLOR="rgb(255, 0, 255)"][/COLOR]

لقراءة ردود و اجابات الأعضاء على هذا الموضوع اضغط هناسبحان الله و بحمده

التصنيفات
الصف الثامن

بحث عن الطاقة الكهربائية في العالم الصف الثامن

بليييييييييييييييييييييز ساعدوني واخر تسليم البحث تاااريييييييييخ 15-11-2017

لقراءة ردود و اجابات الأعضاء على هذا الموضوع اضغط هناسبحان الله و بحمده

التصنيفات
الصف العاشر

تقرير عن استكشاف الشغل و الطاقة للصف العاشر

أبي تقرير جاهز لمشرووع الفيزيا
ومشروعي عن استكشاف الشغل و الطاقة ، هذا المشرووع بتلقونه في كتاب التمارين من مختبر الاستكشاف ، صفحة 69..

الله يخلييييييييييييكم ساعدوووووني

الملفات المرفقة

لقراءة ردود و اجابات الأعضاء على هذا الموضوع اضغط هناسبحان الله و بحمده

التصنيفات
الصف الثاني عشر

تقرير عن الطاقة النووية -تعليم اماراتي

السلام عليكم

تقوم محطات الطاقة النووية بتزويد العالم بحوالي 17 % من الكهرباء وهناك بعض البلدان تعتمد أكثر من غيرها على الطاقة النووية من أجل توليد الكهرباء ففي فرنسا على سبيل المثال 75 % من الكهرباء يولد عن طريق الطاقة النووية طبقاً للوكالة الدولية للطاقة الذرية وفي أمريكا حوالي 15 % من الكهرباء يولد بالطاقة النووية ولكن بعض الولايات تأخذ كهرباء مولد بالطاقة النووية أكثر من الأخرى وهناك أكثر من 400 محطة للطاقة النووية حول العالم وأكثر من 100 فقي الولايات المتحدة.

هل تساءلت يوماً من الأيام عن كيفية عمل الطاقة النووية وعن كيفية بقاء الطاقة النووية آمنة؟
سنقوم في هذه المقالة بتوضيح كيفية عمل المفاعل النووي ومحطة الطاقة وسنقوم بشرح الانقسام النووي وإعطائك نظرة داخل المفاعل النووي.
إن اليورانيوم عنصر شائع جداً على الأرض دمج مع الكوكب أثناء تشكله وقد تشكل أصلاً في النجوم حيث انفجرت النجوم القديمة وتجمعت الغبار من هذه النجوم المحطمة لتشكل كوكبنا.
إن اليورانيوم 238 لديه نصف حياة طويل جداً (4.5 بليون سنة) ولهذا السبب مايزال موجوداً بكميات كبيرة جداً أي بحوالي 99 % وإن اليورانيوم 235 يشكل حوالي 0.7 % من اليورانيوم المتبقي والذي وجد طبيعياً بينما اليورانيوم 234 نادر جداً وقد تشكل عن طريق انحلال يورانيوم 238 (مر اليورانيوم 238 بمراحل عديدة أو اضمحلال ألفا وبيتا لتشكل نظائر مشعة مستقرة وإن اليورانيوم 234 هو وصلة في هذه السلسلة) وإن لدى يورانيوم 235 قدرة مثيرة تجعلها مفيدة في إنتاج الطاقة النووية وفي إنتاج القنبلة النووية وإن اليورانيوم 235 ينحل طبيعياً مثل يورانيوم 238عن طريق إشعاع ألفا ويمر يورانيوم 235 أيضاً بالانقسام التلقائي في نسبة مئوية صغيرة من الزمن.
على أي حال فإن يورانيوم 235 أحد بعض المواد التي يمكن أن تمر بالانقسام المستحث، إذا قام نيوتروناً بالمرور عبر نواة اليورانيوم 235 ستقوم النواة بامتصاص النيوترون بدون تردد وسيصبح غير مستقر ومنقسم فوراً.

الانقســــــــــام النــــــــــــووي
عندما تؤسر نواة النيوترون تنقسم إلى ذرتين خفيفتين وتقذفان اثنان أو ثلاثة من النيوترونات الجديدة (يعتمد عدد النيوترونات المقذوفة على طريقة انقسام ذرة اليورانيوم 235) تقوم بعد ذلك الذرتين الجديدتين ببعث إشعاع غاما عندما تستقران في وضعياتهما الجديدة.
هناك ثلاثة أمور حول عملية الانقسام المستحثة هذه والتي تجعلها هامة بشكل خاص:
ـ إن احتمال أسر اليورانيوم 235 النيوترون أثناء مروره عالي جداً وإن المفاعل الذي يعمل بشكل صحيح ( المعروف بالحالة الحرجة) يقذف نيوترون واحد من كل انقسام وبالتالي يتشكل انقسام آخر.
ـ إن عملية أسر النيوترون والانقسام يحدثان بسرعة كبيرة (1 × 10 – 12 ثانية).
ـ تصدر كمية هائلة من الطاقة على شكل حرارة وإشعاع غاما عند انقسام ذرة وحيدة وإن الذرتان اللتان تصدران عن الانقسام تصدران إشعاع بيتا وتملكان إشعاع غاما أيضاً.
الطاقة التي تصدر عن الانقسام الوحيد يأتي في الحقيقة من الانقسام ومن النيوترونات سوياً وهي تزن أقل من ذرة اليورانيوم 235 الأصلي والاختلاف في الوزن حول مباشرة إلى طاقة وهو يصدر شيء على غرار 7200 Me (مليون فولط الكتروني) وذلك عن طريق اضمحلال ذرة يورانيوم 235 واحدة وهناك الكثير من ذرات اليورانيوم في باون اليورانيوم.
إن باون اليورانيوم المخصب جداً يستعمل لتشغيل غواصة نووية أو حاملة طائرات نووية في كمية مساوية لغالون من الغازولين وإن حجم باون اليورانيوم أصغر من كرة بيسبول وحجم مليون غاز من الغازولين يملأ مكعب يبلغ حجمه 5 أقدام لكل جانب (أي بطول بناية ذات خمسة طوابق) وهنا يمكن أن يكون لديك فكرة عن كمية الطاقة المتوفرة في القليل فقط من يورانيوم 235 ولكي تعمل خواص اليورانيوم 235 هذه يجب أن تخصب عينة من اليورانيوم تحتوي 2 % إلى 3 % أو أكثر من يورانيوم 235 وإن تخصيب 3 % كافي لاستخدامه في مفاعل نووي مدني يستخدم لتوليد الطاقة ويجب أن يكون اليورانيوم المستخدم في الأسلحة بنسبة 90 % أو أكثر من يورانيوم 235.

داخل محطة الطاقة النووية
أنت تحتاج إلى بعض اليورانيوم المخصب بشكل معتدل لبناء مفاعل نووي ويحول اليورانيوم نموذجياً إلى كريات صغيرة يماثل قطرها الدايم (عملة العشر سنتات) ويبلغ طولها بوصة تقريباً وترتب هذه الكريات الصغيرة على شكل قضبان طويلة وتجمع هذه القضبان سوياً في حزم وتغمس هذه الحزم في الماء داخل وعاء ضغط وهنا يكون دور الماء كمحلول تبريد ولكي يتمكن المفاعل النووي من العمل يجب أن تكون الحزمة المغمورة بالماء في مرحلة فوق الحرجة قليلاً وهذا يعني بأن ترك اليورانيوم لأدواته الخاصة سيؤدي إلى السخونة والذوبان في آخر الأمر ولمنع حدوث هذا ركبت أذرع تحكم مصنوعة من مواد تمتص النيوترون وتأخذها إلى الحزمة باستخدام تقنية تمكن من رفع وإنزال أذرع التحكم وهذا يسمح للمشغلين بالسيطرة على نسبة التفاعل النووي، وعندما يريد المشغل من قلب اليورانيوم أن ينتج حرارة أكثر ترفع القضبان عن كتلة اليورانيوم وعندما يريد إنتاج حرارة أقل تخفض القضبان إلى كتلة اليورانيوم ويمكن خفض القضبان بالكامل إلى كتلة اليورانيوم لإغلاق المفاعل في حال وقوع حادث أو لتغيير الوقود.
تقوم حزمة اليورانيوم بالعمل كمصدر طاقة عالي جداً من الحرارة حيث يقوم بتسخين الماء وتحويله إلى بخار ويقوم البخار بنقل توربين البخار الذي يسرع المولد على إنتاج الطاقة ويقوم البخار المفاعل في بعض المفاعلات بالمرور بمبدل حرارة ثانوي متوسط وذلك لتحويل حلقة أخرى من الماء إلى بخار وإن الفائدة من هذا التصميم هي بأن الماء المشع البخار لا يصل التوربين أبدا ًوفي بعض المفاعلات أيضاً يكون السائل المبرد المتصل مع قلب المفاعل غازاً (ثاني أكسيد الكربون) أو معدن سائل(صوديوم، بوتاسيوم) وتسمح هذه الأنواع للمفاعل بتشغيل قلب اليورانيوم في درجات حرارة أعلى.
الخطأ الذي يمكن أن يحدث خارج المحطة
عندما تجتاز المفاعل بحد ذاته يكون هناك اختلافاً بسيطاً بين محطة طاقة نووية وبين محطة توليد الطاقة بالفحم المشتعل أو بالنفط المشتعل ما عدى مصدر الحرارة الذي يستخدم لإنشاء البخار.

تأتي الكهرباء للمنازل وللمكاتب من هذا المولد في محطة
شيرون هاريس التي تنتج 780 ميغاواط

أنابيب نقل البخار لتزويد المولد بالطاقة في محطة توليد الطاقة

إن وعاء المفاعل الضاغط موضوع في بطانة إسمنتية التي تعمل كوقاية إشعاعية وإن هذه البطانة موضوعة داخل وعاء احتواء كبير جداً ويحتوي هذا الوعاء على قلب المفاعل وعلى أجهزة مثل الرافعات …الخ التي تسمح للعمال في المحطة بتزويد الوقود وإبقاء عمل المفاعل وقد وضع وعاء الاحتواء الفولاذي هذا لمنع تسرب أي غازات أو سوائل مشعة من المحطة وأخيراً إن وعاء الاحتواء محمي ببناء إسمنتي خارجي قوي بما فيه الكفاية ليحميه من بعض الأشياء كتحطم طائرة نفاثة فيه، وإن أبنية الاحتواء الثانوية هذه ضرورية لمنع هروب إشعاع بخار مشع في حال وقوع حادث وإن عدم وجود أبنية الاحتواء الثانوية هذه في محطات الطاقة النووية الروسية سمحت للمواد المشعة بالهروب في حادث تشرنوبيل.

يتصاعد الدخان من برج التبريد في محطة هاريس


عمال المراقبة في غرفة التحكم في محطة الطاقة النووية
يعملون على مراقبة عمل المفاعل النووي

إن يورانيوم 235 ليس الوقود الوحيد الممكن استخدامه في محطة الطاقة، هناك مادة انقسامية أخرى هي بلوتونيوم 239 التي يمكن أن تنشأ بسهولة عن طريق دمج يورانيوم 238 بنيوترون الشيء الذي يحدث دائماً في المفاعل النووي.
عندما تنقسم ذرة يورانيوم 235 تعطي نيوترونين أو ثلاثة نيوترونات (اعتماداً على طريقة الانقسام) وإذا لم يكن هناك ذرات يورانيوم 235 في المنطقة فستقوم النيوترونات الحرة بالطيران إلى الفراغ كأشعة نيوترون وإذا كانت ذرة اليورانيوم 235 جزء من كتلة اليورانيوم فسيكون هناك ذرات يورانيوم 235 أخرى قريبة عندها سيحدث أحد هذه الأمور الثلاثة:
ـ إذا قام نيوترون واحد فقط من النيوترونات الثلاثة من كل انقسام بضرب قلب اليورانيوم 235 وتسبب ذلك بالانقسام عندها ستكون كتلة اليورانيوم في حالة حرجة وستوجد الكتلة في درجة حرارة مستقرة ويجب أن يبقى المفاعل النووي في حالة حرجة.
ـ إذا قام أقل من نيوترون واحد من النيوترونات الحرة بضرب ذرة يورانيوم 235 عندها ستكون الكتلة في حالة حرجة فرعية وسينتهي الانقسام في الكتلة.
ـ إذا قام أكثر من نيوترون واحد من النيوترونات الحرة بضرب ذرة يورانيوم 235 ستكون الكتلة حينها في حالة حرجة قصوى وستقوم بالتسخين.
أراد مصمم القنبلة النووية من القنبلة أن تكون في حالة حرجة قصوى لذلك إن كل ذرات اليورانيوم 235 في الكتلة تنقسم في مايكرو ثانية (جزء من مليون من الثانية).
يحتاج قلب المفاعل النووي في المفاعل النووي لأن يكون في حالة حرجة قصوى بعض الشيء لكي يستطيع العاملين في المحطة من رفع وخفض درجة حرارة المفاعل النووي وتعطي أذرع التحكم العاملون طريقة لامتصاص النيوترونات الحرة وبهذا يمكن للمفاعل أن يبقى في مستوى حرج.
إن كمية اليورانيوم 235 في الكتلة (مستوى الإخصاب الإغناء) وشكل الكتلة يسيطران على الحالة الحرجة في العينة، تخيل بأن شكل الكتلة صفيحة رقيقة جداً ستقوم حينها معظم النيوترونات الحرة بالطيران إلى الفراغ بدلاً من ضرب ذرات اليورانيوم 235 لذلك فإن الجسم الكروي هو الشكل المثالي للكتلة وإن كمية اليورانيوم 235 التي يجب جمعها سوياً في الجسم الكروي للحصول على ردة فعل حرجة هي حوالي 2 باون (0.9 كيلوغرام) وهذه الكمية تدعى باسم الكتلة الحرجة وإن الكتلة الحرجة للبلوتونيوم 239 هي حوالي 10 أونسات (283 غرام).

ما الذي يمكن أن يسير بشكل غير صحيح
إن محطات الطاقة النووية المبنية بشكل جيد لديها فائدة كبيرة عندما يتعلق الأمر بتوليد الطاقة الكهربائية وهي نظيفة جداً بالمقارنة مع محطات توليد الطاقة عن طريق الفحم المشتعل وإن محطات الطاقة النووية عبارة عن حلم أصبح حقيقة من الجهة البيئية وإن محطة توليد الطاقة بالفحم المشتعل يصدر نشاط إشعاعي إلى الجو أكثر من محطة طاقة نووية تعمل بشكل جيد وإن محطات الفحم المشتعل تطلق الأطنان من الكربونات والكبريت وعناصر أخرى في الجو.

مشاكل جديرة بالذكر في محطات الطاقة النووية
ـ إن التنقيب عن اليورانيوم وتنقيته ليست عملية نظيفة جداً.
ـ إن محطات الطاقة النووية التي تعمل بشكل غير صحيح يمكن أن تخلق مشاكل كبيرة وإن كارثة تشرنوبيل مثال جيد عن هذا الأمر حيث قامت هذه الكارثة ببعثرة الأطنان من الغبار المشع في الجو.
ـ إن الوقود المستهلك من محطات الطاقة النووية يبقى ساماً لقرون ولحد الآن لم توجد وسيلة خزن آمنة بشكل دائم لهذا الوقود.
ـ إن نقل الوقود من وإلى المحطات يوجد فيها بعض الخطورة.
قامت هذه المشاكل بالتأثير بشكل كبير على إنشاء محطات طاقة نووية جديدة في الولايات المتحدة.

لقراءة ردود و اجابات الأعضاء على هذا الموضوع اضغط هناسبحان الله و بحمده