لوحدات الأساسية في الفيزياء (سوف لانناقش الوحدات الأنكليزية)
هي كل من وحدة الطول المتر ووحدة الكتلة الكيلوجارم ووحدة الزمن الثانية ووحدة الشحنة الكلوم ووحدة درجة الحرارة وفي الحقيقة ان أي وحدة يمكن اشتقاق علاقة بينها وبين المتر والكليوجرام والثانية تعتبر وحدة مشتقة فمثلا الأمبير ( بعضهم يعتبره من الوحدات الأساسية) يساوي حاصل قسمة الكلوم على الثانية فهو مشتقة وكذلك الفولت والفاراد
نفع الله به
السلام عليكم ورحمة الله وبركاته ..
الخاصية الفيزيائية هي أي خاصية قابلة للقياس يمكن لقيمتها وصف حالة نظام فيزيائي في أي لحظة زمنية معينة. لهذا السبب فإن أي تغيرات في الخواص الفيزيائية لنظام ما يمكن استعمالها لوصف تحولاته (أو عمليات التطور بين حالاته اللحظية).
يمكن تصنيف الخواص الفيزيائية على أنها خواص فيزيائية مركزة وخواص فيزيائية منتشرة. الخاصية المركزة لاتعتمد على حجم أو كمية المادة في جسم، بينما العكس في الخاصية المنتشرة. يمكن أيضا وصف الخواص على أنها إما متحدة الخواص أو لامتحدة الخواص. يقال أنها متحدة الخواص إذا كانت قيمها مستقلة عن اتجاه المراقبة ويقال أنها لامتحدة الخواص إن كانت معتمدة على وجهة المراقب.
هناك حالات يكون من الصعب فيها تحديد ما إذا كانت خاصية ما فيزيائية أم لا. على سبيل المثال يمكن أن نرى اللون، إلا أن ما نستلمه كلون ليس سوى تفسير لخواص الانعكاس على سطح.
الخواص الفيزيائية يمكن مقارنتها بالخواص الكيميائية التي تحدد طريقة سلوك المادة أثناء تفاعل كيميائي.
لتغير الفيزيائي تغيُّر في المادة من شكل إلى آخر دون أي تغير في تركيبها الكيميائي أو لونها أو طعمها أو رائحتها. فعندما تدخل قطعة من الخشب في صناعة النشارة، فإن التغيّر فيزيائي. أما إذا أُحْرِقت قطعة الخشب، فإن الخشب سيتحول إلى مواد جديدة، رماد وغازات، وسيكون التغير هنا كيميائيًا لافيزيائيًا. ومن أمثلة التغير الفيزيائي الأخرى انصهار الثلج إلى الماء. تتطلب التغيرات الفيزيائية أحيانًا طاقة، كما في حالة تغير الماء إلى بخار عن طريق التسخين.
بعد موضوع: الحالات الفيزيائية للمادة ، والذي تم فيه تفسير هذه الحالات ، أبدأ في الموضوع الحالي عرض تغيرات الحالات الفيزيائية للمادة، والتي سندرس خلالها حالة تحول الجليد من الحالة الصلبة إلى الحالة السائلة : الانصهار.
لدراسة انصهار الجليد، نضع قليلا من الماء المقطر في أنبوب اختبار ، ثم نضع فيه مسمارا حديديا وندخله في مجلدة الثلاجة .
بعد تجمد الماء يمكن إزاحة المسمار الحديدي بتسخينه ، ثم نضع مكانه المحرار، و نسجل درجة الحرارة عند t = 0 s.
ندخل أنبوب الإختبار في ماء درجة حرارته مساوية لدرجة حرارة الهواء المحيط في نفس اللحظة التي يتم فيها انطلاق العداد.
نسجل درجة الحرارة في كل 30 ثانية .
الجدول التالي يتضمن النتائج :
هذه الصورة مصغرة ، اضغط على الشريط لمشاهدتها بحجمها الاصلي وهو 765×91 .
وفي ما يلي منحنى تغيرات درجة الحرارة بدلالة الزمن:
الاستنتاج:
يكون الماء في الحالة الصلبة عندما تكون درجة حرارته سالبة.
تظهر أولى قطرات الماء الناتج عن انصهار الجليد عند درجة الحرارة 0 مئوية ، وتبقى مستقرة عند هذه القيمة مادام في الأنبوب شيء من الجليد.
بعد ذلك تبدأ درجة الحرارة في الارتفاع من جديد عندما يتحول كل الجليد إلى ماء.
تعتبر درجة الحرارة Θ = 0°C درجة تميز انصهار الجليد .
المصدر:
http://d.villafruela.free.fr
م/ن
بالتوفيق
التغيّرات الكيميائية والتغيّرات الفيزيائية
الخلفية العلمية للموضوع :
من المهم جدا أن نعرف الفرق بين التغيرات الفيزيائية والتغيرات الكيميائية. فكلا النوعين من التغيرات يعتمد عليها دراسة التفاعلات الكيميائية وحالات المادة. كثيرا ما نتفق أن بعض التغيرات تكون واضحه, ولكن هناك بعض الأساسيات يجب أن نٌعتمدها.
التغيرات الفيزيائية عبارة عن تغيرات في الطاقة والحالات المادة. بينما التغيرات الكيميائية تكون على مستوى التغيرات التي تحدث لمكوناتها الأساسية ( ذرات ، جزيئات .. ). فعند الضغط على علبة معدنية واعوجاجها, أكون قد أحدثت عليها تغيرات فيزيائية . حيث أن شكلها تغيير بينما حالتها لم تتغير. كما وأننا عندما نصهر مكعب ثلج فإننا أيضا نحدث تغيرات فيزيائية ( بإضافة طاقة ) . مثل هذه الأمثلة هي تغيرات في حالة المواد. فأنت تسبب تغيّرات فيزيائية إذا ما أثّرت بقوى مثل الحركة أو الحرارة أو الضغط.
أما التغييرات الكيميائية فإنها تحدث في مستوى أصغر. وقد تظهر بشكل واضح في التجارب عند تغير الألوان بالرغم من أن هذه التغيّرات قد حدثت لدقائق لا ترى. فمثلا عند ظهور صدأ الحديد الأحمر ( وهو عادة يلزمه فترة طويلة نسبيا للظهور) فهذا يعني أن ذرات الحديد الأصلية قد تغير تركيبها ( تأكسدت ). أما ذوبان مكعب السكر هو تغيّر فيزيائي لأن المادة ما زالت سكر . بينما لو حرقنا مكعب السكر يصبح التغير تغيّرا كيميائيا ، فالطاقة الحرارية ستعمل على كسر الروابط الكيميائية في السكر ولا يعد سكر.
إن التغيرات الكيميائية قد تكون صغيرة جدا أو أنها قد تحدث على عدة مراحل ويكون نتيجتها نفس عدد الذرات ، إنما يصبح لها تركيب مختلف. فمثلا من السكريات الآحادية : الجلوكوز والجلاكتوز والفركتوز وجميعها تمتلك 6 ذرات كربون و12ذرة هيدروجين و6 ذرات أكسجين. فبالرغم من تشابهها في عدد ونوعية الذرات، إلا أن لها أشكال مختلفه تسمى المتصاوغات. ولكل منها لها التفاعلات الكيميائية المختلفة بسبب اختلافها في الصيغة البنائية.
أمثلة على التغيرات الكيميائية :
التغيرات الكيمائية غير مقتصر حدوثها في المختبر الكيميائي. وسنعرض هنا بعض الأمثلة هذه التغيرات الكيميائية مع معادلتها الكيميائية :
• عادة ما تفقد الملعقة الفضية بريقها وذلك لتفاعلها مع الكبريت الذي في الهواء ليكوّن كبريتيد الفضة ذات اللون الأسود
2 Ag + S –> Ag2S
• عند تعرّض الحديد للهواء الجوي , فإنه يصدأ لتفاعله مع الأكسجين.
4 Fe + 3 O2—> 2 Fe2O3
• يحترق الميثان متحدا مع الأكسجين في الهواء لتكوين ثاني أكسيد الكربون وبخار الماء
CH4 + 2 O2 –> CO2 + 2 H2O
• مضاد الحموضة ( هيدروكسيد الكاليسيوم ) دواء يعادل حموضة المعدة ( حمض الهيدروكلوريك ).
Ca(OH)2 + 2 HCl–> CaCl2 + 2 H2O
• الجلوكوز ( سكر بسيط ) يتخمر إلى الإيثانول وثاني أكسيد الكربون. السكر الذي في العنب أو الحبوب يتخمر باستخدام الخميرة لصنع الكحول وثاني أكسيد الكربون. وثاني اكسيد الكربون هو الغاز الذي يتصاعد بكثرة في المسكرات
C6H12O6 (glucose)– 2 C2H5OH (ethyl alcohol) + 2 CO2
• الكحول مع الأكسجين يصبح خل مع جزيئات من الماء. هذا التفاعل أكثر تعقيدا من تخمّر الكحول بسبب التفاعلات الكيميائية الحيوية.
C2H5OH + O2 –> HC2H3O2 + H2O
وكقاعدة عامة، فالتفاعلات الكيمياحيوية تصبح أمثله ضعيفة لتوضيح التفاعلات الكيميائية الأساسية لأنها تفاعلات واقعية تحدث في أجسام الكائنات الحية وتحت سيطرة الأنزيمات .
أمثلة على التغيّرات الفيزيائية:
هنا بعض الأمثلة للتغيرات التي لا تعتبر كيميائية. ففي كل حالة يمكن للمواد الأصلية أن يعاد اصلاحهاوتعديلها بالعمليات الفيزيائية
• غليان الماء في غلاية الشاي أو تكاثفه على الزجاج البارد
• علبة من الألومنيوم توضع في على الغاز ويتم تسخينها
• تحوّل الثلج الجاف من المادة الصلبة إلى الحالة الغازية لتكوين غاز ثاني أكسيد الكربون ( التسامي )
• صهر الذهب أو تصلبه
• خلط الرمل مع الملح
• طحن قطعه من الطبشور إلى بودرة
• جعل قضيب من الحديد مغنطيسا
• اذابة قطعة السكر في الماء
المنطقة الرمادية ما بين التغيّرات الكيميائية والتغيّرات الفيزيائية :
يمكن القول بأن هناك منطقة رمادية نقف فيها ونتساءل .. هل هذه التغيرات هي كيميائية أم فيزيائية؟ ولماذا ؟
ذوبان ملح المائدة في الماء
تترابط الأيونات في المركبات الأيونية بروابط أيونية ،وعند تكوين المحلول تتأين مثل هذه المركبات – عادة – حيث يعمل جزئ الماء على إبعاد الأيونات عن بعضها البعض. وملح الطعام ( كلوريد الصوديوم ) مثال جيد للمادة الأيونية. معظم المواد الأيونية مثل كلوريد الصوديوم تكون على شكل بلورات صلبة تتأين في المحاليل المائية. فالكمية القليلة من ملح الطعام تذوب بسرعة كبيرة في قدر الطبخ لتتحول إلى أيونات .
كيف لنا أن نعرف بأن الأيونات في المحلول ؟
مثل هذه المحاليل تتميّز بأنها موصلة جيدة للتيار الكهربائي بسبب حرية حركة أيوناتها :
NaCl –> Na+ + Cl-
تنجذب أيونات الصوديوم الموجبة نحو جانب ذرات الأكسجين السالبة في الماء وتتجه أيونات الكلوريد السالبة نحو جانب ذرات الهيدروجين الموجبة من جزيئات الماء.
في هذه الحقيقة الواقعة .. هل هو تفاعل أم لا ؟ نحن ذكرنا بأن التغييرات الفيزيائية هي الحالة التي لا يحدث أي تغيرات كيميائية للمتفاعلات أو المواد ألأصلية ويمكن إعادة تصليها بالعمليات الفيزيائية. وأن التغيّرات الكيميائية التي يتكون فيها مواد جديدة.
ويمكن الجزم هنا بأن كلوريد الصوديوم الصلب أكيد يختلف عن أيونات الصوديوم وأيونات الكلوريد. والأيونات توّصل التيار الكهربائي ويمكنه أن يتفاعل في التفاعلات الأيونية. لكن من جانب آخر , فمثل هذه الأيونات يمكن اعادتها تماما إلى المواد الأصلية بعملية تبخير الماء . ومثل هذا يتم عادة بتبخير ماء البحر للحصول على الأملاح.
هل تكسّرت الروابط؟ نعم , فإذا قمت بفصل أيونات الصوديوم اشعاعيا ونقلتها إلى محلول أيونات لم يتم فصلها . فروابط البلورة سيتم تشكيلها وستختلط الأيونات المفصولة مع الأيونات الغير مفصولة . فالبلورة كتلة متماسكة من الأيونات التي تأخذ الأماكن المنظمة ولا تعمل جزيئات منفصلة عن بعضها البعض .
بعض المركبات الأيونية مثل حمض الأستيك , يتأين جزئيا في الماء مكونا أيون الأسيتات وأيون الهيديوجين . حمض الأستيك حمض ضعيف , وهذا يعني بأن المادة لم تذوب كليا في الماء ، إلا أن هناك أدلة على وجود متميّز لأيونات الهيدروجين .
• تبلور كبريتات النحاس المائية الزرقاء بالحرارة
تتميّز كبريتات النحاس المائية بلونها الأزرق اللافت للنظر ولمعانه الزجاجي الظاهر لبلوراته . هو أحد البلورات المائية التي ترتبط معه جزيئات الماء مع الأجزاء الغير مائية منه لتكوّن بلورة شبكية. ويتم التعبير عنها بنقطه بعد الصيغة الجزيئية للمركب للتعبير من وجود الماء في الجزء الأيوني منه.
ومن المعروف عن البلورات المائية فالتسخين اللطيف سيفصل جزيئات الماء عن كبريتات النحاس. وخلال التسخين سيتحوّل لون الأزرق المبهر إلى مسحوق لونه أزرق باهت، لخروج الماء منه كبخار كما في المعادلة :
CuSO4.5H2O –> CuSO4 + 5H2O
ارتباط الماء بكبريتات النحاس يكون بنسبة 1 : 5 مول. وعملية فصل الماء عن البلورة لن يكون لمدة طويلة .. فبمجرد إضافة قطرة من الماء إلى البلورة المجففة فإنها تكون شرهه للماء وستلتقط الماء وهي تحدث صوتا لشدة التفاعل مصاحبا بالحرارة. وتغيّر في اللون مشابه للبلور المائية .
في هذه الواقعة هل هو تفاعل أم لا ؟ فتبادل الحرارة ، والنسبة الثابته ما بين الماء وكبريتات النحاس والتغيّر في الخصائص تجعل من النقاش متحيّزا لاعتباره تفاعلا. أما في الجانب الآخر ، كون أن الماء يظل ماء وصيغة كبريتات النحاس لا تتغير. والعملية قابلة للانعكاس بعملية فيزيائية بسيطة وهي إضافة القليل من الماء أو التسخين اللطيف لفصل الماء .
ملاحظة : كبريتات النحاس مادة سامة بسبب وجود أيونات النحاس. والنحاس والفلزات الثقيلة الأخرى مثل الرصاص والزئبق تسبب مشاكل في خلايا الكائنات الحية. تعتبر تجربة إزالة الماء من كبريتات النحاس المائية خطرة لأن استخدام بلورة كبيرة قد تنفجر بفعل الحرارة وتسبب تناثر كبريتات النحاس في كل مكان . كما وأن بودرة البلورة اللامائية أيضا خطرة